
Abstract General approaches for developing models

to describe the elastic properties of granular and porous

materials are discussed, with emphasis on their appli-

cation to predicting the elastic properties of powders

undergoing uniaxial compaction. Both particle-based,

and pore-based models were considered so as to reflect

the transition in compact response with decreasing

porosity; being particle-dominated at high porosity,

then pore-dominated at low porosity. Pore-based

models were further subdivided into: mechanistic

models, which consider the effects of porosity on

internal mechanical fields; and geometric models, for

which the elastic response is assumed to correlate with a

microstructural feature (e.g. load-bearing area). A

selection of models suggested in the literature, consid-

ered representative of these approaches, was applied to

experimental measurements of the elastic moduli of

powders during compaction. In general, the geometric

pore-based models show most promise, as these are

able to approximate the transition in pore character

during compaction. However, further developments are

required for application to uniaxially compacted pow-

ders. In particular, it is necessary to develop the ability

to predict more than one elastic modulus, handle

irregular powder particles, and accommodate powders

comprised of brittle solid phase materials.

Introduction

Experimental results on the elastic properties of pow-

ders during uniaxial compaction have been discussed in

companion publications [1, 2], in which a number of

results pertinent to the evolution of compact elastic

moduli with decreasing porosity were highlighted.

Prominent among these is that uniaxial compaction

induces significant elastic anisotropy, with the powder

compact most generally described as a transversely

isotropic material. However, transversely isotropic

elastic moduli for the axial plane were found to be

qualitatively similar to pseudo-isotropic elastic moduli

calculated from axial wave speed measurements and

assuming complete isotropy [2]. An extensive suite of

such measurements is reported elsewhere [1]; demon-

strating the effects of solid phase material properties

(yield behaviour, and elastic moduli), and particle

shape (pore character) on the porosity dependence of

compact elastic moduli.

Attention here is focussed on methods for predicting

elastic properties of powders during uniaxial compac-

tion. Important requirements of model behaviour are

discussed prior to evaluating a selection of models

considered representative of the different approaches

suggested in the literature. Included amongst these are

models developed for porous materials. As previously

discussed [1], the mechanical behaviour of densely

compacted powders increasingly approximates that of

a porous material as porosity is reduced towards zero.

Recognising this transition, it is useful to consider

models developed for both granular materials, and

porous materials. It is highlighted from the outset that,

in many cases, assumptions invoked in model devel-

opment may not strictly hold for the case of uniaxially
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compacted powders; typically models are developed

for the respective ends of the porosity spectrum: either

pore-based models (low porosity), or particle-based

models (high porosity). Despite this, application to

powder compaction data is a useful test of model

robustness, and provides insight into those features

important for development of models specific to com-

pacted powders. Further, many of the observations on

model strengths and deficiencies have wider validity

than just for the specific case of uniaxial powder

compaction data considered here.

Approaches to modelling

Introductory remarks

Relevant models may be divided into two general

categories: particle-based models and pore-based

models. The particle-based approach considers a

medium comprised of discrete solid phase units sur-

rounded by a void matrix, while pore-based models

consider a medium formed by placing pores as inclu-

sions into a solid matrix. In general, the particle-based

models only cover a small range of porosities starting

at a loosely packed state (relatively high porosity).

Conversely, pore-based models are confined to the

lower end of the porosity spectrum, though they usu-

ally encompass a wider range of porosity. In either

case, very few models incorporate the deformation of

the solid phase material (which is required for signifi-

cant compaction) in a physically realistic manner. As

with experimental work reported in the literature [1,

2], the majority of modelling efforts focus on effective

Young’s modulus (E), and occasionally bulk (k) or

shear (l) modulus; but only rarely is attention directed

towards Poisson’s ratio (m). Quite often only one

modulus is considered (usually E). This is an important

omission, as at least two elastic moduli are required to

completely characterise elastic behaviour (depending

on the prevailing isotropy), and hence, models for the

porosity dependence of at least two elastic moduli is

required.

Aside from the common goals of functional sim-

plicity and accuracy over the entire range of porosity,

desirable attributes of models describing the elastic

properties of porous and granular materials are given

below.

Correct asymptotic behaviour

The model should satisfy the boundary condition of

predicting solid phase elastic moduli at zero porosity

(E = Esolid, and m = msolid), and also predict the exis-

tence of a critical porosity (pc) at which stiffness van-

ishes: i.e. E = 0, and m = 0.5. For a powder, the critical

porosity must fall between the porosities correspond-

ing to the ‘‘tapped’’ and ‘‘apparent’’ density states, i.e.

ptap £ pc £ pa [1, 65]. Hence, in model evaluations

discussed later, the value of pc was constrained to lie

within these bounds so as to conserve its physical

interpretation.

Consistency with linear elasticity

In addition to requiring the predicted stiffness com-

ponents to be the inverse of compliances (self-consis-

tency), the standard relations of linear elasticity should

also hold between all elastic moduli. This can be a

useful method of evaluating models. For instance, a

common assumption [3, 4] is that normalised shear and

Young’s moduli follow the same porosity dependence,

viz:

EðpÞ
Esolid

¼ lðpÞ
lsolid

: ð1Þ

But, by a well-known relation of isotropic linear

elasticity (e.g. [5]):

EðpÞ ¼ 2lðpÞ½mðpÞ þ 1�: ð2Þ

Equation 1 then implies:

mðpÞ ¼ msolid: ð3Þ

Thus, if the porosity dependence of normalised

shear and Young’s modulus were the same, Poisson’s

ratio would be independent of porosity, remaining

constant at its solid phase value. Hence, checking

consistency in this manner provides a simple means of

validating the relation assumed in Eq. 1.

Physical interpretation

Model parameters should have clear interpretation in

terms of a physical property or process. Many models

idealise pores (or particles) to a particular geometric

shape, commonly spheres or ellipsoids. For a realistic

outcome, this should match observed pore (particle)

geometry. Further, a direct link should be obvious

between the model parameters that describe pore

structure and the observed sample microstructure. This

is particularly important were the inverse approach to

be utilised, i.e. microstructural characterisation by

measurement of elastic properties.
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In addition to these quite general requirements for

modelling physical properties of both porous and

granular materials, it is also felt that the distributed

nature of interactions between particles (or pores)

should be incorporated in model development. Usu-

ally, the behaviour of a representative sub-system of

the medium (e.g. a single particle–particle interaction,

or a single pore in an infinite matrix) can be accurately

described; certainly for simple boundary conditions

(e.g. contacting spheres, or an isolated ellipsoidal

inclusion). However, granular and porous materials of

practical interest typically comprise a very large num-

ber of such sub-systems. Two difficulties then arise

when attempting to extrapolate sub-system behaviour

to a corresponding bulk property. First, each sub-sys-

tem is generally not identical, e.g. particles may contact

at different angles, pores may have different shapes,

etc. Thus, considering a single ‘‘typical’’ sub-system

may not suffice. Second, due to differences between

each sub-system, and interaction between sub-systems,

it is unlikely that each is subject to the same mechan-

ical fields (stress or strain), and thus, significant varia-

tion in response may be expected. However, uniform

and closely reproducible physical properties are

observed in macroscale behaviour. Thus, it is suggested

that prediction of elastic behaviour (and other physical

properties) requires first an understanding of the basic

interactions, and second, application of an appropriate

averaging (homogenisation) procedure for transferral

of these interactions to the bulk. This second point

appears the most challenging, with a variety of

approaches suggested in the literature. Model devel-

opment often commences by considering a medium

idealised as either a particle assemblage, or a solid

matrix material with inclusions of a specific type of

porosity. Discussion in the following centres on salient

features of such particle-based and pore-based

approaches to modelling; specific examples are con-

sidered later (see ‘‘Evaluation of specific models’’),

including a comparison with experimental data.

Particle-based models

Many particle-based models idealise the granular

assemblage as a regular packing of identical spheres

(simple cubic, face-centred cubic, etc.). In such models

(e.g. [6–11]), particles are represented by spheres to

simplify the particle–particle interactions. The

assumption of a regular packing provides homogeni-

sation, with the properties of a small group of con-

tacting spheres (a representative sub-system) taken to

be equivalent to that of the bulk. Note that only those

models in which the particles retain their individual

identity are discussed here: other models (e.g. [12, 4])

which consider particle packings, but with continuous

solid phase bonding at inter-particle contacts are dis-

cussed later (see ‘‘Mechanistic pore-based models

(Transversely isotropic)’’).

To idealise a granular material as a regular packing

of spheres is conceptually simple; however, there are a

number of concerns. First is the ability of spheres to

accurately replicate particles of a real granular mate-

rial. Powder particles often deviate significantly from

identical spheres (or other simple geometric shapes).

Hence, the assumption of regularly stacked monosize

particles is unlikely to be realised in practice: a dif-

ferent sized, or non-spherical particle will perturb the

assumed packing [12], and thereby alter the uniformity

of physical properties (e.g. [13, 14, 6]). Further to this,

regular packings have inherent anisotropy [12] with

elastic stiffness changing according to the direction and

nature of applied stress. Many models based on regular

sphere packings are solved only for a particular loading

condition, most often uniaxial loading along < 1 0 0 >

(e.g. [4]). By analogy with crystalline materials, it may

be possible to consider the bulk granular material as

comprised of randomly oriented domains (grains) of

regular packings, with the isotropic response approxi-

mated by averaging over many different lattice direc-

tions. However, unlike atoms, it is not energetically

favourable for powder particles to assume regular

positions, and as such, domain sizes will be quite small

with a large fraction of particles at domain boundaries.

As a result directional averaging alone is unlikely to

suffice. To better approximate real granular materials,

several researchers have considered random packing of

both spherical particles (e.g. [15–20]), and non-spheri-

cal (typically ellipsoidal) particles (e.g. [21, 22]). Some

also consider different sized particles (e.g. [15, 23–26]).

However, these models still suffer the significant dis-

advantage of being unable to handle changes in com-

pact microstructure which result from permanent solid

phase deformation of particles as porosity is reduced

during compaction. Most particle-based models only

consider elastic deformation about a particular packing

arrangement (random or regular). This essentially

limits their validity to a single value of porosity (or at

best, for porosity changes due solely to particle rear-

rangement). Thus, although porosity may appear as a

model parameter, it simply defines the packing state

for which the elastic properties are solved. Similarly,

applied stress often appears as a model parameter;

again though, it is generally assumed to cause elastic

deformation only, not the permanent solid phase

deformation of particles inevitable during large-scale

powder compaction.
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An example of this approach to modelling is fur-

nished by the model for the effective Young’s modulus

of packings of identical spheres developed by Kendall

et al. [8]. Assuming the relation between inter-particle

contact area and applied load conforms to ‘‘JKR’’

contact mechanics, an equation for Young’s modulus

of a simple cubic sphere packing was obtained, viz:

E ¼ 9pCE2
solid

16Dð1� m2
solidÞ

2

" #1=3

ð4Þ

where G: interface energy (energy to separate a unit

area of plane surfaces), D: particle diameter.

For other regular packings of identical spheres

(hexagonal close-packing, etc.), expressions similar to

Eq. 4 were obtained [8]. Kendall and co-workers found

that, if predicted Young’s modulus was plotted against

porosity for each packing, the points fell close to a

simple curve given by Eq. 5 (see subsection ‘‘Kendall

et al. (1987)’’). However, in the development of this

model equation, the porosity changes considered were

due solely to particle rearrangement: permanent

deformation of the particle material (plastic flow of

particle material, particle fracture, etc.) was not con-

sidered. As such, Eq. 5 represents a locus of possible

Young’s modulus depending on efficiency of packing,

with particles retaining their initial shape (spherical) at

each level of porosity. Consideration of Eq. 5 at p = 0,

demonstrates that, in general, the required boundary

condition of E = Esolid is not satisfied (see subsection

‘‘Kendall et al. (1987)’’), suggesting poor predictive

performance as compact density increases towards

solid. This is not particularly surprising, as the assumed

regular packings of perfect spheres will certainly not be

valid in this porosity region; particles of a real granular

material would be heavily deformed, bearing little

resemblance to spheres.

Pore-based models

Introductory remarks

Many equations have been suggested to describe the

elastic properties of porous materials. The majority of

modelling is approached by considering effects of

adding discrete pores to a solid phase matrix (instead

of discrete particles to a void matrix). In order to make

the attendant mathematics tractable, many idealisa-

tions of a real porous material, and assumptions of its

behaviour are required. Common assumptions are

spherical, isolated, non-interacting pores (e.g. [27–30]).

The primary advantage of a spherical pore is the

simplicity of surrounding mechanical fields. However,

in many materials of practical interest, spheres are

unlikely to accurately replicate the true porosity, par-

ticularly at high porosities where extensive pore

interconnection is expected. Attempts to more accu-

rately describe realistic porosity have been made by

assuming the pores can be represented by ellipsoids,

varying from prolate to oblate (e.g. [31–36]), often

utilising results due to Eshelby [37] on the effect of an

isolated ellipsoidal inclusion in a homogeneous matrix.

Pore shapes other than ellipsoidal will have complex

stress concentrations, but have been considered (e.g.

[38–40, 36]). In each, the pore is still assumed to be a

single, definable feature (closed porosity): intercon-

nection and unbounded pore space are not explicitly

considered.

Models for the elastic properties of porous materials

may be broadly classified according to the basic

approach used [12]. The first type of model approach,

denoted as mechanistic, considers the effect on

mechanical fields when porosity is included into a solid

phase matrix. Often this is achieved as a limiting con-

dition of a two-phase composite material, with prop-

erties of the inclusion phase set to empty space (void).

Typically, elastic moduli are evaluated by considering

effects of adding an inclusion (pore) to a representative

volume element (sub-system) of the material. The

average strain in this element is related to the average

stress (or the converse), and the effective properties

are then transferred to the macroscale by use of a

suitable homogenisation (averaging) scheme. Other

approaches based on wave scattering have also been

used (e.g. [30]). The second general approach to

modelling elastic properties of porous materials are

geometrically based [12]. In such models, a certain

geometric feature of the microstructure is assumed to

be directly linked to the elastic behaviour. Such models

are typically less rigorous, as the link may not be

physically based; however, this approach has the strong

advantage of being able to handle a wide range of

porosities [12].

Mechanistic pore-based models

Perhaps the simplest models for achieving property

averaging consider either the stress throughout the

entire material to be uniform (Reuss model), or

assuming uniform strain throughout (Voigt model)

[41]. Predictions of the two approaches are often

averaged, or used in tandem to provide bounds for

elastic moduli of a composite material. Provided the

elastic moduli of matrix and inclusion phase do not

differ by much more than a factor of two, such bounds
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are reasonably narrow [41]. However, for the extreme

case of a porous material, they are too wide to have

useful application. Narrower bounds for elastic moduli

of composite materials have also been derived (e.g. [28,

42, 43]). However, when following this approach, care

should be taken to ensure a realistic microstructure is

obtained when the properties of one phase are set to

those of empty space (void). Some other homogenisa-

tion schemes which have been used to obtain estimates

of elastic moduli of porous materials are discussed

briefly in the following; more extensive descriptions are

available elsewhere [36, 44–48].

(i) Non-interacting inclusions (dilute concentration).

This method considers a single inclusion added to an

infinite matrix of solid phase material which is subject

to uniform far-field stress (or strain). Commonly, the

inclusion is idealised to a regular shape; often using the

results of Eshelby [37] for an ellipsoidal inclusion in an

infinite matrix. Inclusions are assumed to be separated

by a sufficiently large distance so that interactions can

be neglected. That is, the perturbation to mechanical

fields (stress and strain) caused by one inclusion does

not affect the uniformity or magnitude of the field

around adjacent inclusions. In practice, inclusion

(pore) placement will be approximately random; thus

the requirement for non-interacting inclusions will

generally hold best for low inclusion concentrations

(low porosity). Rice [12] suggests pore interaction

becomes significant when adjacent pore surfaces are

separated by a distance approximately equal to their

size. For equal spherical pores, stacked in a simple

cubic array (often considered indicative of random

packing), this would restrict applicability to porosities

less than approximately 0.2. Random placement of

pores is expected to produce a number of instances

where the minimum distance between pores is quite

small [36]; and thus, in practice, the non-interacting

pore assumption is likely to hold only at the lowest

porosity levels (p < 0.1 [49]). For application to pow-

der compaction, significantly higher porosities need to

be considered; hence the non-interacting inclusion

approach itself is not considered in detail here. How-

ever, results for the non-interacting case often form the

basis of other homogenisation schemes that do incor-

porate effects of interaction, discussed in the following.

Finally, it is noted that interaction between pores may

be beneficial for reducing stress concentrations and to

assist in uniform transfer of stress throughout the

medium [12].

(ii) Self-consistent scheme. The basis of the self-

consistent scheme is again consideration of an isolated

inclusion placed into a homogeneous effective matrix.

However, in contrast to the case of non-interacting

inclusions, matrix properties are not taken to be those

of the solid phase material: the assumed elastic prop-

erties of the (effective) matrix are those of the bulk

material [34]. This approach thus accounts for pore

interaction by acknowledging the effect nearby poros-

ity has on modifying the matrix properties from those

of the solid phase material. The disadvantage of this

scheme is that models for porous materials generally

predict vanishing elastic properties at p = 0.5 due to an

implicit assumption of symmetry between inclusion

and matrix phases [50, 51, 46]. This feature is clearly

undesirable, as many granular and porous materials

have measurable elastic properties for porosities

greater than 0.5. Further, practical implementation is

hampered by the cumbersome nature of the equations,

which in addition to being mathematically complex,

require iterative solution techniques (see, for example

[51, 34]).

(iii) Differential method. This method initially con-

siders a solid matrix containing an infinitesimal amount

of inclusions, with effective properties calculated by

the non-interacting inclusion method. As the number

of inclusions is small, the non-interacting method will

be valid. The solid matrix is then replaced by a

homogeneous matrix with the properties just calcu-

lated, to which another infinitesimal amount of

inclusions are subsequently added. Again, the non-

interacting inclusion method is invoked to find the

effective properties of this new material. In turn, these

properties are assigned to a new homogeneous matrix,

to which another infinitesimal amount of inclusions are

added. This procedure is repeated until the desired

inclusion concentration level is obtained [44].

Zimmerman [29] has derived a model for the elastic

moduli of a composite with spherical inclusions using

this method. However, by consideration of the effects

of adding cracks to the material, Kachanov et al. [36]

argue that both this method and the self-consistent

scheme are insensitive to the average stress in the

matrix, a situation they suggest is physically unrea-

sonable.

(iv) Mori–Tanaka method. The Mori–Tanaka

method [52] differs from (ii) and (iii) above, in that the

bulk properties are obtained by considering an inclu-

sion subject to an effective field (stress or strain),

rather than being placed in an effective matrix. Dvorak

and Srinivas [53] and, Nemat-Nasser and Hori [44]

discuss the similarities between this approach and

those described above in detail. Models applicable to

porous materials have been derived using the

Mori–Tanaka method by, for example: [35, 36, 54, 46,

55]. Kachanov et al. [36] argues that the Mori–Tanaka

approach is superior to the self-consistent and
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differential methods of homogenisation. Ferrari and

Filipponi [56] also found the Mori–Tanaka method

provided a better fit to data on porous ceramics than

the self-consistent scheme or non-interacting inclusion

method. However, Ponte Castañeda and Willis, [57]

caution that the Mori–Tanaka method is not always

appropriate, citing examples involving anisotropic dis-

tribution of inclusions, and mixes of inclusion shapes

and orientations.

(v) Composite sphere model. The composite-sphere

model originally considers the porous body to be

constructed of composite spherical particles consisting

of a spherical shell of matrix material surrounding a

concentric spherical inclusion [28]. The ratio of the

phases in each composite sphere is equal to the overall

ratio of matrix to inclusion phase of the body. It is

assumed the composite spheres are available in an

infinite range of sizes, so that all space can be filled by

inserting suitably sized spheres in the interstices

between packings of other (larger) spheres. Stress

applied to the body is assumed to be uniformly

distributed (hydrostatic) around the inclusion in each

composite sphere so that strains can be calculated to

obtain elastic moduli for the body [47, 48]. Various

extensions to the basic composite-sphere model have

been made (e.g. [32, 39, 40, 45]). An obvious disad-

vantage of this modelling approach is the required size

distribution so that all interstitial space is completely

filled. Further, all inclusions (pores) are assumed to be

isolated by matrix material. Neither assumption is

likely to be met in practice.

Geometric pore-based models

Typical of the geometric models is the load-bearing

area concept discussed in a series of publications by

Rice [47, 48, 58, 12], and also by Cytermann [59]. In

these models, normalised Young’s modulus of the

porous material is assumed to equal the normalised

load bearing area (the area of solid phase material per

unit area in a cross-section perpendicular to the direc-

tion of stress application). Most of the discussion by

Rice is based around porous materials with idealised

microstructures, constructed from regular packings of

either pores in a solid matrix, or solid spheres in a void

matrix (empty space). With such microstructures, a

number of possible load-bearing areas exist, depending

where the cross-section is taken through the packing.

Rice [12] argues minimum solid area (MSA) is most

appropriate of the various load-bearing areas (average,

maximum, minimum, etc.). MSA is the smallest cross-

sectional area of solid phase material in the plane

perpendicular to the direction of stress application.

MSA normalised by unit area (NMSA) is then assumed

[12] to equal to the effective property of interest,

i.e. E/Esolid = NMSA^. Throughout the following

‘‘NMSA^’’ denotes normalised minimum solid area of

the plane perpendicular to the loading direction, while

‘‘NMSA||’’ is the normalised minimum solid area of the

plane parallel to the direction of loading. In the MSA

modelling approach, effects of pore character are

incorporated implicitly within the model, and do not

appear as a quantitative model parameter. This

approach has several attractive features:

• Both pore-based and particle-based materials and

handled in the same manner.

• The transition from interconnected to isolated pore

structures is incorporated.

• Boundary conditions are satisfied. At p = 0;

NMSA^ = E/Esolid = 1. Alternatively, at p = pc;

NMSA^ = E/Esolid = 0.

• Densification by permanent solid phase deforma-

tion is included in a realistic manner (particularly

for ductile materials).

The final point is particularly advantageous as it

incorporates changes in microstructure with porosity.

However, there are also a number of disadvantages to

this approach. Particular among these is that more than

one elastic modulus is required for complete elastic

characterisation (i.e. solution of Hooke’s law for a

general triaxial stress state). Two elastic moduli are

required (commonly E and m are used) to describe a

medium which is elastically isotropic; if the medium is

elastically anisotropic, more moduli are required. This

appears to be neglected in the discussion of MSA

models, which provide a description of E/Esolid only.

Presumably, if an analogous model were to be devel-

oped for a second elastic modulus, MSA would still the

most appropriate of the possible load-bearing areas.

However, while the choice of NMSA^ for normalised

Young’s modulus is reasonable, if not completely rig-

orous, a similar choice of MSA for other moduli is not

obvious. For Poisson’s ratio, no single MSA seems

appropriate. If the analogy held with Poisson’s ratio

defined in terms of material strains, the ratio of

NMSA|| to NMSA^ would be appropriate. However,

were this to be the case, then m(p) = NMSA||/

NMSA^ = 1 for model microstructures formed by

regular packings of pores or particles. Similarly, for

shear modulus, l/lsolid = NMSA^ seems the most

likely candidate. But, for a regular packing,

NMSA^ = NMSA||, and thus, l/lsolid = E/Esolid which,

by Eqs. 1–3, implies Poisson’s ratio is constant at the
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solid phase value for all porosities. Neither situation

matches observed behaviour. It is noted however, that

this very behaviour will often make a given MSA

model for Young’s modulus less susceptible to issues of

anisotropy. For instance, in the MSA model based on

simple cubic sphere stacking MSA is the same in

< 100 >, < 110 > and < 111 > [12, 48].

The other main disadvantages of the MSA approach

are common to those of all models considered thus far.

These are: first, the ability to accurately reflect the

physics of the true microstructure, and second, inter-

pretation of model predictions. Most MSA models are

generated considering a single type of porosity (this

gives each its particular porosity dependence). How-

ever, in practice, it is inevitable that the nature of the

pore character will evolve with porosity changes. For

example, in the initial stages of sintering a compact of

mono-sized spherical particles, one of the MSA models

for identical spherical particles would be applicable.

However, as the bulk density approaches that of the

solid phase, the pores will become increasingly spher-

ical (due to preferential growth of necks at interparti-

cle contacts). In this stage, a MSA model for a regular

packing of spherical pores would be most appropriate.

Transition from one model to another can be

accounted for by interpolation using a porosity

dependent weighting for the different model compo-

nents [12]. However, the MSA-porosity curve resulting

from such a scheme would no longer be unique to a

porosity type: the same values could be generated by a

combination of other porosity types. Thus, while MSA

models do consider some evolution of sample micro-

structure, further issues remain to be resolved. Still, it

is felt that the microstructural changes contained

within a single MSA model still provides a more real-

istic description of compaction-induced porosity chan-

ges than the mechanistic models discussed previously.

A further issue for practical utilisation of MSA

models is measurement of NMSA in real material

microstructures. For the periodic microstructures that

result from regular packings of particles or pores, the

definition of MSA is straightforward: the smallest

contact areas lie on a single well-defined plane

(Fig. 1a). Further, MSA is unique for such a micro-

structure. However, for the more realistic microstruc-

ture of Fig. 1b, the definition of MSA is less clear. In

this case the smallest areas of contact do not lie on a

single plane, but are distributed throughout a finite

sample thickness. A further practical consideration is

the undoubted spatial variation in MSA in a real

material. In a periodic structure, the global MSA will

be equal to the local MSA (taken on the length scale of

particle size). However, in a real material this will not

be the case: in addition to a global minimum, several

local minima would be expected. While a global MSA

is simply defined, utilising this value would suggest all

deformation is confined to a specific area of the sam-

ple. An alternative, such as taking the average of local

MSAs, would require averaging of local minimum

properties. This would be difficult to perform in a truly

objective manner; though in practice, it is likely that a

reasonable ‘‘working’’ definition could be formulated,

particularly if supported by experimental measure-

ments of MSA (e.g. from specimen tomography, or a

suite of cross-sectioned samples).

Evaluation of specific models

Introductory remarks

A large number of models have been suggested in the

literature. In the following, a selection of models,

considered representative of the approaches described

in ‘‘Approaches to modelling’’ are discussed further

and compared with results of uniaxial powder com-

paction experiments described in a previous work by

the authors [1]. As exclusively empirical models reveal

little of the physical processes that underpin elastic

behaviour, they are not considered here (see [3, 60] for

a discussion of such models). When selecting specific

models to evaluate, three main features were consid-

ered: (i) physical interpretation of model parameters,

(ii) whether a complete description of elastic behaviour

is provided, and (iii) ability of the model to satisfy

boundary conditions.

(a) (b) Fig. 1 Definition of minimum
solid area (MSA). MSA is
shown by the bold lines. (a)
Model based on a simple
cubic packing of identical
spheres. MSA is the cross-
sectional area at particle
contacts. (b) A more realistic
sample microstructure. In this
case, the MSA does not lie on
a single plane
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Due to their inability to handle the large changes in

porosity associated with significant compaction, only

one particle-based model is considered here, that due

to Kendall et al. [8]. This model is considered broadly

representative of those based on particle packing that

admit elastic deformation only. Because of this limi-

tation, such models are only applicable at the highest

porosities considered in this study. At lower porosities,

the assumed contact geometry will be invalidated by

permanent deformation of the particle material

induced by compaction. Models derived for porous

materials are generally more robust to changes in

porosity; thus, a number are considered, drawing from

those representative of mechanistic and geometric

approaches. As the experimental data considered ex-

tends to high porosities, no dilute–concentration

mechanistic models are considered. Of the remaining

homogenisation techniques, the approach of Nielsen

[40] (composite sphere method), and Zhao et al. [35]

(Mori–Tanaka method) are considered. Of the

geometric models for porous materials, the minimum

solid area models of Rice [12] are discussed, along with

the model of Wang [4]. Both models are based on load-

bearing area, though each considers a slightly different

distribution of deformation throughout the material.

Although models that predict both E and m are pre-

ferred, the equation of Boccaccini et al. [61] is also

included as it is used subsequently used in the model of

Arnold et al. [62] for prediction of m(p). This latter

model is of interest as it displays the ability to quali-

tatively replicate the concave porosity dependence of m
evident in the experimental data [1].

Particle-based models

Kendall et al. (1987)

This model is based on a calculation for effective

Young’s modulus of a variety of different spherical

particle packings (see section ‘‘Approaches to model-

ling’’ under subsection ‘‘Particle-based models’’)

E ¼ 17:1
E2

solidC
D

� �1=3

ð1� pÞ4: ð5Þ

Model parameters: E = E(Esolid, G, D, p). G is the

interface energy (energy required to separate a unit

area of plane surfaces). D is particle diameter.

Boundary conditions: As discussed in ‘‘Approaches

to Modelling’’ subsection ‘‘Introductory remarks’’, two

boundary conditions are of interest. At p = 0, the

predicted elastic moduli should coincide with solid

phase values; and a critical porosity (percolation

threshold), pc should be predicted at which material

stiffness vanishes. For a granular material pc is

expected to lie within the range of gravity-induced

packing states ptap < pc < pa [1], where ptap and pa are

porosities of the ‘‘tapped’’ and ‘‘as-poured’’ packing

states, respectively. For powders, pc is less than unity,

e.g. for spheroidal copper it has been found that

0.370 < pc < 0.423 [1].

For the model of Kendal et al. when p = 0:

E ¼ 17:1
E2

solid
C

D

� �1=3

: At E = 0: p = pc = 1, for finite G.

Thus, model predictions at these two limiting values

suggest this model is not applicable to powder com-

paction. The required boundary condition of E = Esolid

at p = 0, will only be satisfied for a particular value of

particle size (D), assuming G is constant for a given

material (interface). For the example of glass powder,

this condition is satisfied only for D = 3.1 nm, using

G = 0.04 J m–2 [63] and Esolid = 64 GPa. Such a situa-

tion is unrealistic, though not surprising, given this

model assumes particles retain their spherical shape

throughout.

The lower boundary condition of the model, which

predicts E = 0 only at p = 1 is also physically unreal-

istic. This arises from the use of an empirical equation

(5) to approximate the porosity dependence of effec-

tive Young’s modulus calculated for a variety of par-

ticle packings (such as Eq. 4 for a simple cubic

packing). The inability to accommodate critical

porosities less than unity is a common failing of many

models discussed in the following, and is one of the

main contributors to poor predictive ability of this and

several other models considered here. Predictions for

the model of Kendall and co-workers over a wider

porosity range are presented in the following.

Model predictions: Figure 2 presents a comparison

of the Kendall et al. model predictions, and experi-

mental data for three different powders. For clarity,

experimental data is restricted to a sub-set of the

different powders discussed elsewhere [1]. The three

selected (spheroidal glass, spheroidal copper, and

dendritic copper powders), are considered representa-

tive: spheroidal copper and spheroidal glass powders

illustrate the influence of solid phase yield mechanism,

while the dendritic and spheroidal copper powders

demonstrate particle shape effects. To test predictions

of Eq. 5, G was used as a fitting parameter; D was fixed

at 90.5 lm, as all powders had been sieved to select the

+75–106 lm size fraction. Generally, a reasonable fit

results; however, fitted values of G are far in excess of

expected values. For the glass powder compact, the

fitted value G = 120 J m–2, is some three orders of
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magnitude higher than literature values (0.04 J m–2)

[63]. Also for copper: G is 1.96 J m–2 [64] whereas the

fitted values were 1,990 and 3,050 J m–2, for spheroidal

and dendritic copper powders, respectively. Given that

G represents the strength of adhesion between other-

wise free surfaces, an increase in G is consistent with

enhanced inter-particle bonding as compaction pro-

ceeds. However, in the present case, stronger bonding

is not solely due to surface forces; the dendritic powder

in particular will have a component due to particle

interlocking that results from plastic flow of the solid

phase material. Extension of G to a more general

parameter representing inter-particle bond strength

(i.e. one which incorporates both surface adhesion, and

interlocking effects) is of doubtful value, as this is not

consistent with the basic interaction considered in the

model (i.e. particle bonding due to surface forces only).

Further, the contribution of particle interlocking will

change during compaction. Thus a single value of such

a redefined G would not be appropriate to describe the

porosity evolution of elastic moduli (a point discussed

in more detail in subsection ‘‘Boccaccini et al.

(1993)’’). Of perhaps greater importance though, is

that the assumed microstructure of the model (identi-

cal spherical particles) was rarely approached experi-

mentally (micrographs of highly deformed particles

recovered from powder compacts are presented else-

where [65]). This deviation from assumed microstruc-

ture will also affect model predictions. For the

spheroidal particles in particular, the model of Kendall

et al. (Fig. 2) underestimates Young’s modulus at low

porosity, and overestimates at high porosity; an

unsurprising result since the model admits only elastic

deformation between touching spheres. As deforma-

tion proceeds by compaction, the area of solid phase

contact must grow (on average), and hence the stiffness

will rise, as observed.

Mechanistic pore-based models (Isotropic)

Nielsen (1982)

The model of Nielsen [40] is included as an example of

models for porous materials based on the composite

sphere approach to homogenisation (see section

‘‘Approaches to modelling’’ under subsection ‘‘Mech-

anistic pore-based models’’). The resulting equations

for Young’s modulus and Poisson’s ratio are:

E¼ 2bEsolidð1�pÞð5msolid�7Þðpc�pÞ
2bð5msolid�7Þðpc�pÞþpcpðmsolidþ1Þð15msolid�13Þ

ð6Þ

m¼2bmsolidð5msolid�7Þðpc�pÞþpcpðmsolidþ1Þð5msolid�3Þ
2bð5msolid�7Þðpc�pÞþpcpðmsolidþ1Þð15msolid�13Þ :

ð7Þ

Model parameters: E = E(Esolid, msolid, p, pc, b), and

m = m(msolid, p, pc, b). b is a shape factor which cha-

racterises transfer of stress within the solid matrix,

incorporating information on both the shape of pores

and their interconnection (0 < b < 1). Nielsen [39,

40] suggests b can be interpreted as representing the

tendency for one phase to ‘‘cleave’’ the other into

discrete units. The lower limit is b = 0, when the pore

phase totally surrounds solid phase particles. Due to

the phase symmetric nature of the model, the alter-

native is also possible; b = 1 represents the upper

bound, when solid phase material totally surrounds the

pore phase, i.e. isolated pores. Thus, low values of b
correspond to strongly interconnected pores (small

solid phase contact area), while higher values indicate

the pores are becoming increasingly isolated. There is

also an effect due to pore character; with isolated, non-

spherical pores found to produce b < 1 [39]. However,

beyond this, the relationship of b to the sample

microstructure, and in particular the microstructural

features that would need to be measured for prediction

of b, is not clear. Equations 6, 7 show a functional

dependency of elastic moduli with porosity and b such

that a smaller value of b causes a more rapid decrease

of each elastic modulus with porosity (for fixed msolid
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Fig. 2 Predictions of the model of Kendall et al. (Eq. 5) com-
pared to experimental data from [1]. G was used as a fitting
parameter; see also Table 1. Spheroidal glass: (·) measured, (- - - -)
fitted. Spheroidal copper: (�) measured, ( ) fitted. Dendritic
copper: (m) measured, (–) fitted
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and pc). Further details are provided in [65]. To further

assist interpretation of b, in [65] the equations of

Nielsen were applied to the data of Roberts and

Garboczi [49] from finite element modelling of idea-

lised microstructures. This provided indicative b values

of 0.92 for a microstructure based on spherical pores;

0.49 for ellipsoidal pores; and 0.37 for a microstructure

formed from bonded solid spheres [65]. Equations 6, 7

both depend on Poisson’s ratio of the solid phase

material. For fixed b and pc, the effect of msolid on

Young’s modulus (Eq. 6) is negligible. In contrast,

msolid strongly affects the nature of the evolution of m
with porosity in this model. For msolid > 0.2, m decreases

with porosity, whereas msolid < 0.2 produces an

increase of m with p, and m is independent of porosity at

msolid = 0.2 [65].

Boundary conditions: When p = 0: E = Esolid,

m = msolid. At E = 0: p = pc, and mc ¼ 5msolid�3
15msolid�13. These

two conditions also result for b = 0. Given that –

1 £ msolid £ 0.5 for an isotropic material, the critical

value of Poisson’s ratio must lie within the range

0.09 £ mc £ 0.29. Further, for many materials (certainly

all studied in this work), msolid > 0, and hence

0.09 £ mc £ 0.23.

The Nielsen model satisfies the boundary conditions

quite well, correctly predicting both solid phase elastic

moduli at zero porosity, and the existence of a critical

porosity (pc) for which E = 0. However, the prediction

of 0.09 £ mc £ 0.23 is significantly lower than the value

of 0.5 predicted on the basis of physical reasoning that

air is the stress transmitting medium at the point where

the solid phase ceases to support load [1]. As seen in

the following, this has important implications on the

quality of model predictions for m.

Application of Nielsen’s model to experimental data

is illustrated in Fig. 3. For consistency between elastic

moduli, both sets of data were regressed simulta-

neously, by minimisation of the objective function

defined by Eq. 8 (following Martin et al. [46]).

Regression parameters for the model of Nielsen are

provided in Table 1.

Xn

i¼1

��
Eexperimental � Epredicted

Eexperimental

�2

þ
�

mexperimental � mpredicted

mexperimental

�2� ð8Þ

for a (p, E, m) data set of n points.

As discussed above, and elsewhere [1], for a powder,

pc is expected to lie within the range ptap £ pc £ pa,

thus in the regression, pc was only allowed to vary

within this range. For the model of Nielsen, pc

converged to a stable value within this range for all

powders except the dendritic copper powder which was

constrained by the minimum value (ptap), see Table 1.

Removal of this constraint provided a better fit, but at

the expense of a clear physical interpretation for pc. No

constraints were placed on the shape factor b.

The predictive ability of Eq. 6 compares reasonably

with the experimentally measured Young’s modulus,

particularly for those powders that pc converged to a

value in the range ptap < pc < pa. However, Fig. 3b

indicates poor agreement of the model with the data of

Poisson’s ratio, particularly at high porosities. This was

consistent among all powders [65], and seems to be due

to the lower boundary condition of 0.09 £ mc £ 0.23.

The requirement for the model equation to satisfy this

boundary condition means the observed rise in m at

high porosities is unable to be replicated by the model

of Nielsen.

The general agreement between fitted values of pc

and those expected from packing tests (Table 1) [1, 64]

is encouraging, and illustrates the benefits of account-

ing for vanishing material stiffness at porosities less

than unity. When the model did not accurately predict

pc, its predictive ability for Young’s modulus dimin-

ished noticeably (e.g. dendritic copper powder). Fitted

values of the shape factor, b generally correlated with

expected trends. However, the ability of b to discrim-

inate between different microstructures was not always

successful. While able to differentiate between ductile

and brittle spheroidal powders, particle shape differ-

ences within the ductile powders did not produce a

strong effect on b. Table 1 indicates b for spheroidal

metal powders spans a range of 0.027, whereas the b
value of the irregular copper (US) powder is only 0.026

lower than for spheroidal aluminium. Similarly, the

range of b values within the group of irregular metal

powders is substantial (0.084). Thus, the ability to

identify a microstructure purely on the basis of the

best-fitting b value is questionable. A more basic

problem with the values of b obtained from this model,

is that the microstructure is described by a single

parameter. From sectioned compacts of irregular cop-

per powder (US Bronze) [65], the porosity was found

to be largely closed and approximately isometric at low

porosities (p = 0.08); while at higher porosities

(p = 0.31), porosity was much more open and inter-

connected. Using Nielsen’s suggested interpretation of

b as described above, b should be close to unity (iso-

lated spherical pores) at porosities close to zero.

Conversely, b should approach zero at high porosities.

Thus, for significant compaction of a powder, a single

value of b is not appropriate: compaction induces
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changes in microstructure, and hence b. This is a dis-

advantage common to many porous material models

which describe shape using a single parameter [34, 46,

12, 58]. Potentially, this effect may be used to cha-

racterise changes in pore character with porosity, by

obtaining a local rather than global value for b. How-

ever, it is necessary that the model accurately describes

the experimental data to do so. Unfortunately, as

exemplified by predictions for Poisson’s ratio, and

consideration of the boundary conditions for Poisson’s

ratio at pc, the model of Nielsen is unable to meet this

requirement for uniaxially compacted powders. Thus,

discussion on the relative merits of finding an optimal

value of the shape parameter at each porosity, is

deferred until later (see subsection ‘‘Boccaccini et al.

(1993)’’).

Zhao et al. (1989) (Isotropic model)

Zhao et al. [35] derived a model for the elastic prop-

erties of porous materials using the Mori–Tanaka

method of homogenisation, with pores represented as

ellipsoids. Two cases of interest to the current study

were considered: (i) an elastically isotropic porous

material, constructed of ellipsoids whose orientational

distribution is random in three dimensions; and (ii) a

transversely isotropic medium, containing ellipsoids

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Porosity, p

N
or

m
al

is
ed

 Y
ou

ng
's

 m
od

ul
us

Glass (meas.) Sph.Cu (meas.) Den.Cu (meas.)

Glass (fit) Sph.Cu (fit) Den.Cu (fit)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6

Porosity, p

P
oi

ss
on

's
 r

at
io

,n

Glass (meas.) Sph. Cu(meas.) Den. Cu (meas.)

Glass (fit) Sph. Cu(fit) Den. Cu (fit)

a

b

Fig. 3 Predictions of the
Nielsen model (Eqs. 6, 7); see
Table 1 for parameter values
of b and pc. (a) Normalised
Young’s modulus. (b)
Poisson’s ratio. Spheroidal
glass: (·) measured, (- - - -)
fitted. Spheroidal copper: (�)
measured, ( ) fitted.
Dendritic copper: (m)
measured, (–) fitted

7912 J Mater Sci (2006) 41:7902–7925

123



distributed with random orientations in two dimen-

sions only. Discussion of the second case is deferred

until ‘‘Mechanistic pore-based models (Transversely

isotropic)’’. For an isotropic (completely random ori-

entational) distribution of ellipsoidal pores, the fol-

lowing equations for Young’s modulus, and Poisson’s

ratio result.

E ¼ 3Esolidðp� 1Þ
pð2msolid � 1ÞP2ðmsolid; aÞ � 2pðmsolid þ 1ÞQ2ðmsolid; aÞ þ 3ðp� 1Þ

ð9Þ

m ¼ pð2msolid � 1ÞP2ðmsolid; aÞ þ pðmsolid þ 1ÞQ2ðmsolid; aÞ þ 3msolidð1� pÞ
2pðmsolid þ 1ÞQ2ðmsolid; aÞ � pð2msolid � 1ÞP2ðmsolid; aÞ � 3ðp� 1Þ :

ð10Þ

Model parameters: E = E(Esolid, msolid, p, a), and

m = m(msolid, p, a). P2(msolid, a) and Q2(msolid, a) are

complicated functions of the Eshelby tensor that de-

pend on the solid phase Poisson’s ratio and the aspect

ratio (a) of substitutional ellipsoids (for the sake of

brevity, they are not provided here; please refer to the

original reference [35] for further details). The aspect

ratio, a, of the substitutional ellipsoids can vary within

the range 0 < a < ¥, representing in the extremes

disc and needle-shaped pores; a < 1 represents an

oblate ellipsoid, and a > 1, a prolate ellipsoid, while

a = 1 is a sphere. For both Young’s modulus and

Poisson’s ratio, increasing deviations from a = 1 cause

a more rapid decrease of the moduli with increasing

porosity. a = 1 (spherical pores) represents the stiffest

possible system at a given porosity (a result common to

other model predictions; see [1] for discussion). Devi-

ations from a = 1 reduce the stiffness, with oblate

pores (a < 1) having a much stronger effect than

prolate pores (a > 1). The reason for this behaviour

becomes apparent when considering the extreme cases.

A strongly oblate pore corresponds to a disc-like crack,

for which a plane of solid phase material is discontin-

uous. Alternatively, the limiting case for a prolate pore

is a needle-like crack, for which material is discontin-

uous along a single line only. Clearly, the latter case

will have a lesser effect on elastic properties.

Both model equations depend on the solid phase

Poisson’s ratio, though the effect on Young’s modulus

only becomes significant for msolid > 0.4 [65]. As with

the model of Nielsen [40], higher values of msolid pro-

duce a falling characteristic of m with p, while as msolid

approaches zero, m increases with p.

Boundary conditions: When p = 0: E = Esolid,

m = msolid. At E = 0: p = pc = 1, and mc ¼
ð2msolid�1ÞP2ðmsolid;aÞþðmsolidþ1ÞQ2ðmsolid;aÞ

2ðmsolidþ1ÞQ2ðmsolid;aÞ�ð2msolid�1ÞP2ðmsolid;aÞ.

As with the model of Nielsen, the model of Zhao

et al. yields the correct asymptotic limit for zero

porosity. However, in this case, the existence of a

critical porosity less than unity is not accommodated.

Further, at p = pc = 1, mc = 0.5 does not hold in general

[65]. As shown in the following, both have significant

effects on the predictive ability of this model.

Application of the model (Eqs. 9, 10) to experi-

mental data is illustrated in Fig. 4; best-fitting values of

pore aspect ratio (obtained by minimisation of Eq. 8)

are listed in Table 1. Regression values of a indicate

strongly oblate pores, closely approximating disc-like

cracks. A large contributor to the poor performance of

this model when applied to uniaxially compacted

powders is the inability of the model equations to ad-

mit vanishing stiffness before p = pc = 1. Thus, the

model must attempt to account for the observed

porosity dependence of the experimental data, while

satisfying both boundary conditions described above.

While the upper boundary condition is met, model

predictions of the lower boundary condition (pc = 1)

Table 1 Regression parameters for models of Kendall et al., Nielsen, Zhao et al. and Boccaccini et al. (Eqs. 5–7, 9–11, respectively)

Powder Initial pack-
ing*

Kendall et al. Nielsen Zhao et al. a Boccaccini et al.

ptap pa G, (J m–2) pc b Isotropic Transversely isotropic a

Glass (spheroidal) 0.365 0.448 120 0.425 0.177 0.012 – 0.078
Aluminium (spheroidal) 0.402 0.514 1,340 0.445 0.437 0.031 0.075 0.188
Stainless steel (spheroidal) 0.379 0.469 1,420 0.421 0.462 0.011 0.029 0.110
Copper (spheroidal) 0.370 0.423 1,990 0.391 0.464 0.024 0.065 0.154
Copper (dendritic) 0.695 0.737 3,050 0.695* 0.206 0.026 0.076 0.197
Copper (irregular, US) 0.652 0.717 2,780 0.670 0.411 0.032 – 0.210
Copper (irregular, MM) 0.583 0.649 2,390 0.606 0.402 0.030 0.056 0.195
Iron (irregular) 0.625 0.698 3,830 0.652 0.327 0.029 – 0.173

Fitted values for additional experimental data presented in a companion paper [1] are also provided. * Indicates pc was constrained to
lie within bounds ptap < pc < pa

* Experimentally measured quantities [65]
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deviates strongly from experimental data. Hence, it is

the requirement for the model to smoothly asymptote

to p = 1 (in a manner commensurate with its functional

form), before the predicted stiffness can vanish (e.g.

Fig. 4a), that leads to its poor predictive ability. In

terms of the model, the region between p = 1 and the

porosity at which each powder actually begins to

exhibit elastic properties is effectively one of extremely

high compliance. The relatively rapid transition

between this region and the experimental data, is

clearly unable to be accommodated by a model with

the functional form suggested by Zhao and co-workers.

Boccaccini et al. (1993)

The model of Boccaccini et al. [61] also represents

porosity by substitutional ellipsoids. The equation

describing the model (Eq. 11) is based on the consid-

erations of Mazilu and Ondracek [33] of an isolated

ellipsoidal inclusion in a unit cell of matrix material

E ¼ Esolid 1� p2=3
� �1:21n

: ð11Þ

where n ¼ a1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða�2 � 1Þ cos2 /

p
:
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Fig. 4 Predictions of the
model of Zhao et al. (Eqs. 9,
10); see Table 1 for parameter
values of a. (a) Normalised
Young’s modulus. (b)
Poisson’s ratio. Spheroidal
glass: (·) measured, (- - - -)
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measured, ( ) fitted.
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Model parameters: E = E(Esolid, p, a, /). a is the

axial ratio of substitutional ellipsoids (pores); / the

angle between applied stress direction and the rota-

tional axis of the substitutional ellipsoid, with / = 54.7�
(cos2/ = 0.3333) representing a random (isotropic)

ellipsoid distribution throughout the material [61].

Ellipsoids are characterised in the same manner as

described previously: a = 1 is a sphere; a > 1 is a

prolate ellipsoid; and a < 1 an oblate ellipsoid. As with

the model of Zhao et al. spherical pores produce the

highest possible value of E for a given porosity. Like-

wise, oblate pores produce a stronger effect than pro-

late pores; though differences between the two cases

are less pronounced [65]. Due to the symmetric nature

of the cos2(/) function, all values of / will produce a

curve within the bounds defined by those for which

0� < / < 90�; however for values in the range

45� < / < 90�, the effect of / on E is not strong [65].

Boundary conditions: When p = 0: E = Esolid. At

E = 0: p = pc = 1. Note also that, E fi 0 as n fi ¥.

However, given that 0 £ cos2(/) £ 1, then E fi 0 in

the limit as either a fi 0, or a fi ¥. An exception is

when cos2(/) = 1, in which case E fi 0 only as

a fi ¥. Likewise, if cos2(/) = 0, then E fi 0 only if

a fi 0. Once again, this model appropriately satisfies

the upper boundary condition, however it does not

admit values of the critical porosity less than unity

(except for limiting values of a).

Application of the model of Boccaccini et al.

(Eq. 11) to experimental data is illustrated in Fig. 5.

Both a and / were used as regression parameters when

generating the fitted curves. Initially, a was the only

variable fitted, with / fixed at 54.7� (an isotropic

material). When a converged to a stable value, / was

also included as a fitting parameter. This method was

adopted to determine whether Boccaccini’s model

could be used to indicate the presence of anisotropy.

However, in all cases, no subsequent change in /
occurred. This indicates the model depends mainly on

aspect ratio of the ellipsoidal pores is relatively

insensitive to their presumed orientation.

Even though this model also assumes pc = 1, it fol-

lows experimental data much better. This suggests the

functional form of Eq. 11 is better able to cope with

‘‘transition’’ from the region of porosities in which the

powders do not exhibit elastic properties. That only

one modulus is calculated also reduces difficulties in

determining an optimum fit to the data, although

agreement with the copper powders is still relatively

poor. While values of a obtained from this model seem

more realistic in terms of expected sample micro-

structure, as with Nielsen’s model, it does not dis-

criminate between different compact microstructures

particularly well (Table 1). Again, this is most likely

due to the inability of a single parameter to accom-

modate microstructural changes during powder com-

paction, i.e. a should be a function of porosity, not

constant. To investigate this further, Eq. 11 was solved

on a point-by-point basis, finding the optimal value of a
at each porosity (see also [46]). Data for all powders

discussed in [1] is provided to enable comparison

between a(p) for a number of different powder com-

pacts. The most basic result yielded by Fig. 6 is that a is

not constant: the optimum pore aspect ratio changes
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during compaction. a(p) generally follows expected

trends; at high porosities, the rugged powders are dis-

tinct from spheroidal powders. Further, the ductile and

brittle spheroidal powders separate as porosity de-

ceases, consistent with the diverging pore character

expected due to different mechanisms of yield. Finally,

a fi 1 as p fi 0 consistent with evolution of pore

character towards isolated spherical pores at low

porosity.

To be of practical use though, values of a obtained

by this procedure must be able to be unambiguously

interpreted in terms of the material microstructure.

However, by suitable selection of a (and /), Eq. 11 can

be made to pass through practically any individual

point that lies beneath the line E/Esolid = (1–p). Thus,

any point within this parameter space can be specified

using the model of Boccaccini et al. and a particular

value of a (and /). Similar comments hold for other

models and their parameters as well, though their

functional form may restrict access to a specific region

of parameter space. However, as a local value of a is

valid only for a single porosity, the elastic properties at

other porosities cannot be predicted in the absence of

independent information on the change of a with p.

Thus, as described by Rice [58, 12], unless the physical

interpretation of the shape parameter (a) can be as-

sured, it essentially becomes an empirical parameter

when fitted in such a manner, and its usefulness for

microstructural characterisation is questionable in such

a circumstance.

Arnold et al. (1996)

The model presented by Arnold et al. [62] is discussed

here mainly because it is capable of producing the

multi-valued porosity dependence of Poisson’s ratio

demonstrated by experimental measurements during

uniaxial powder compaction [1]. The resulting equa-

tion is a combination of three separate models; two

which describe the effect of porosity on bulk modulus

(k), with one relation valid at high porosities and the

other valid at low porosities. The two models are

combined using a smoothing function, viz:

kðpÞ ¼ ð1� sÞkðlow pÞ þ skðhigh pÞ ð12aÞ

s ¼ 1þ e�aðp�bÞ
h i�1

ð12bÞ

where k(low p), k(high p) are the bulk modulus models

valid for low and high porosity, respectively; s is a

smoothing function with empirical parameter values

a = 100, and b = 0.4 recommended [61] for the

smoothest join. k(low p) and k(high p) are:

kðlow pÞ ¼ ksolid
2ð1� 2msolidÞð3� 5pÞð1� pÞ

2ð3� 5pÞð1� 2msolidÞ þ 3pð1þ msolidÞ
ð12cÞ

kðhigh pÞ ¼ ksolid
2ð1� 2msolidÞð1� pÞ

3ð1� msolidÞ
: ð12dÞ

Both models for bulk modulus assume spherical

pores and do not have any adjustable parameters. The

third model utilised is that of Boccaccini et al. [61]

(Eq. 11) to describe the effect of porosity on Young’s

modulus. Arnold and co-workers combined these

model equations for k and E using a well-known

relation of isotropic linear elasticity (Eq. 13) to obtain

Poisson’s ratio as a function of porosity.

mðpÞ ¼ 0:5� EðpÞ
6kðpÞ ð13Þ

where E(p) and k(p) are given by Eqs. 11, 12a,

respectively.

Model parameters: m = m(msolid, p, a, /); a and / are

as defined for the model of Boccaccini et al. [61] (see

subsection ‘‘Boccaccini et al. (1993)’’).

Boundary conditions: When p = 0: s fi 0, thus

k fi k(low p) fi ksolid. Thus, as E = Esolid at p = 0

(see subsection ‘‘Boccaccini et al. (1993)’’), m fi msolid.

At E = 0, there are three possibilities: (i) p = pc = 1; (ii)

a fi 0; or (iii) a fi ¥.

(i) If p = 1, then s fi 1 and k fi k(high p) fi 0.

With k = 0, and E = 0, m is indeterminate; however,

model plots indicate m fi 0.5 as p fi 1 [65], and

hence p = 1 is again the critical porosity for this model.

For cases (ii) when a fi 0, and (iii) a fi ¥;

m fi 0.5, assuming k remains finite (given it is not a

function of either a, or /).

Model predictions: Unlike the previous models for

Poisson’s ratio, the model of Arnold and co-workers

can accommodate both a rising and falling character-

istic for m as a function of p (for a given value of msolid)

[65]. This dual character arises from the two different

models used for bulk modulus; the low porosity model

(Eq. 12c) potentially allows m to decrease with p, while

the high porosity model for k (Eq. 12d) accounts for

the branch where m increases with p [65]. Changing the

pore aspect ratio in the model for Young’s modulus

(Eq. 11) shifts the m(p) curve towards m = 0.5. Again,

oblate pores have a stronger effect than prolate pores

[65].
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Model predictions are compared with experimental

data in Fig. 7. Values of Young’s modulus were cal-

culated using parameters which provide the best fit to

Eq. 11 as described previously (see subsection

‘‘Boccaccini et al. (1993)’’). The resulting predictions

of Poisson’s ratio are poor indicators of measured data,

being substantially higher in all cases. This is most

likely because only part of the model (the equation for

Young’s modulus) considers pore character: predic-

tions of bulk modulus are based on models assuming

spherical pores. As discussed above (see subsections

‘‘Zhao et al. (1989) (Isotropic model)’’ and ‘‘Boccac-

cini et al. (1993)’’) and elsewhere [1], spherical pores

generally provide the stiffest possible system at a given

porosity. While the prediction of E accounts for re-

duced stiffness due to pore shapes other than spherical,

k is fixed to be the stiffest possible (spherical pores).

Hence, the term E/(6k) is presumably smaller than

would be the case if both accounted for non-spherical

pores, increasing m towards 0.5. Again, the constraint

imposed by the lower boundary condition pc = 1 (as

discussed in subsection ‘‘Zhao et al. (1989) (Isotrophic

model)’’) may also contribute to the poor predictive

ability of the model by Arnold et al. when applied to

description of m(p) for powders undergoing uniaxial

compaction.

Mechanistic pore-based models (Transversely

isotropic)

In the model of Zhao and co-workers [35] discussed

previously (see subsection ‘‘Zhao et al. (1989) (Iso-

tropic model)’’), an isotropic porous material was

modelled by considering a random distribution of

ellipsoids in three dimensions. In addition, Zhao and

co-workers also presented a model appropriate to

transversely isotropic materials by restricting the ori-

entational distribution of the ellipsoidal pores to be

random in two rather than three dimensions. Equa-

tions for five moduli (Ea, Er, lr, la, ma) resulted, as is

required to completely describe the elastic properties

of a transversely isotropic medium (Eqs. 14–18).

Er ¼
Esolidð1� pÞ

ð1� pÞ þ pP11ðmsolid; aÞ
ð14Þ

Ea ¼
Esolidð1� pÞ

ð1� pÞ þ pP33ðmsolid; aÞ
ð15Þ

lr ¼
lsolidð1� pÞ

ð1� pÞ þ pP12ðmsolid; aÞ
ð16Þ

la ¼
lsolidð1� pÞ

ð1� pÞ þ pP13ðmsolid; aÞ
ð17Þ

ma ¼
ð1� pÞ þ pP31ðmsolid; aÞ
ð1� pÞ þ pP33ðmsolid; aÞ

: ð18Þ

Model parameters: Ea = Ea(Esolid, msolid, p, a);

Er = Er(Esolid, msolid, p, a); lr = lr(lsolid, msolid, p, a);

la = la(lsolid, msolid, p, a); ma = ma(msolid, p, a). P11(msolid,

a), P12(msolid, a), P33(msolid, a), P13(msolid, a), and P31(msolid,

a) are functions of the Eshelby tensor, depending on the

solid phase Poisson’s ratio and the aspect ratio (a) of

substitutional ellipsoids (see [35] for details).

Boundary conditions: At p = 0, la = lr = lsolid;

Ea = Er = Esolid; ma = msolid. Ea = Er = 0, and

la = lr = 0 only for p = pc = 1, and ma;c ¼ P31ðmsolid;aÞ
P33ðmsolid;aÞ :

As with the isotropic model (see subsection ‘‘Zhao

et al. (1989) (Isotropic model)’’), this model also sat-

isfies the correct upper boundary condition, but does

not admit a critical porosity less than unity. Again,

oblate pores have more pronounced effects on the

elastic moduli than prolate pores. However, in contrast

to previous models, it is now possible for a pore shape

other than spherical to have the highest Young’s

modulus at a given porosity [65]. For shear modulus,

however, spherical pores still represent the stiffest

possible pore character.

Predictive ability of the transversely isotropic model

of Zhao et al. (Eqs. 14–18) was evaluated by compar-

ison with the experimental data provided elsewhere
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[2]. The lack of experimental data on C13 limits rigor-

ous comparison between model predictions and

experimental data to la and lr only. Although it is

possible to obtain estimates of the remaining three

moduli (Er, Ea, ma) by use of the Saint-Venant

approximation [2], an alternative is to re-cast Eqs.

14–18 to predict the components of the stiffness matrix

(Cij) for a transversely isotropic material. This method

was preferred as it maximises use of experimental data.

As with the isotropic model, the aspect ratio, a of the

substitutional ellipsoids was used as a regression

parameter by minimising an equation analogous to Eq.

8 containing terms for C11, C12, C33, and C44. The

predicted values were then re-transformed to the

engineering moduli (Er, Ea, lr, la, mr, ma), for compar-

ison with estimated values from experimental data. As

a result, the experimental data for Young’s modulus

and Poisson’s ratio should be taken as a guide only.

This is not considered to be significant in the present

case, as the resulting model predictions are not of

sufficient quality. Regardless, the model fits can be still

be explicitly compared with the data for shear modu-

lus, as these points correspond to direct experimental

measurements. This slightly convoluted procedure was

preferred to discussing the model in terms of Cij, as the

engineering moduli are easily interpreted, and are

more readily compared with the predictions of the

isotropic moduli discussed previously. Representative

results are provided in Fig. 8 for the spheroidal and

dendritic copper powders. The regressed values of the

pore aspect ratio are provided in Table 1, along with

the equivalent values for the isotropic model of Zhao

and co-workers.

The predictive ability of this model is still quite

modest, though improved relative to the isotropic

model. Predictions for the shear moduli agree best with

experimental data, though again, these seem hampered

by the requirement of retaining finite material stiffness

for all porosities less than unity. This appears to be a

significant disadvantage of the modelling approach

used by Zhao and co-workers. Furthermore, the large

difference between Young’s modulus for the radial and

axial planes is not replicated in the data. Similar

comments hold for Poisson’s ratio.

In total, these results indicate the assumed pore

anisotropy between the axial and radial directions is

too strong. For this model, the differences between the

two planes is obtained by randomly orienting the

ellipsoids in two dimensions, but constraining their axis

of symmetry to lie within the plane of isotropy. Zhao

and co-workers also present models in which the

symmetry axes of the ellipsoids are distributed at an

angle to the transverse plane normal. Solutions for sine

and cosine distributions were presented (a uniform

distribution results in the isotropic model discussed

earlier). Both distributions provide a more gradual

transition between pore orientation between the axial

and radial planes, which will reduce the difference

between moduli predictions between axial and radial

planes. However, these models are not considered here

as it is would be difficult to provide experimental jus-

tification for such pore distributions, certainly for the

case of powder compaction. Further, it is unlikely that

the distributions considered by Zhao et al. will produce

accurate model predictions, as it is predicted that ei-

ther the shear modulus of the radial plane exceeds that

of the axial plane (sine distribution); or alternatively,

Young’s modulus for the radial plane is greater than

the axial plane (cosine distribution). This situation

contradicts the trends of the experimental data, for

which both Young’s modulus and shear modulus are

higher in the axial plane.

As may be expected, there is little correspondence

between the best-fitting values of pore aspect ratio

for the isotropic and transversely isotropic models,

with a for the transversely isotropic model approxi-

mately twice that for complete isotropy. This is

attributed mainly to the poor fit of the isotropic

model. Overall, the model for transverse isotropy still

has very limited success for the description of the

elastic properties of compacted powders, particularly

for Young’s modulus and Poisson’s ratio. However, it

is felt that the improvement relative to the model

assuming complete isotropy illustrates the need to

account for elastic anisotropy in model development,

especially when considered that, with the exception of

the orientational distribution of the substitutional

ellipsoids, both models have the same underlying

assumptions.

Geometric pore-based models

Minimum solid area models (Rice 1998)

Minimum solid area (MSA) models belong to the

category of geometric models, which assume macro-

scopic elastic response is related to the load-bearing

area of the solid phase material. The key assumption

in MSA models is that normalised Young’s modulus

equals normalised minimum solid area of the porous

material [47, 48, 58, 12] (see section ‘‘Approaches to

modelling’’ under subsection ‘‘Geometric pore-based

models’’). Models discussed by Rice [12] consider the

change in MSA with porosity for idealised micro-

structures. Many different microstructures were con-

sidered, including regular packing of spheres in a
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void matrix, and regular packings of pores (spheres,

cylinders, etc.) in a solid phase matrix. Some

advantages, and potential disadvantages of this

approach were discussed in section ‘‘Approaches to

modelling’’ under subsection ‘‘Geometric pore-based

models’’.
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according to Zhao et al. see Eqs. 14–18. Model predictions are
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Possibly the most attractive feature of these models

is that changes in sample microstructure with porosity

are incorporated in a physically realistic manner. As a

specific example, consider a microstructure composed

initially of a simple cubic packing of identical spheres.

This microstructure can be simplified by considering a

representative sphere bounded by a cube (unit cell).

Densification of the packing can be considered con-

ceptually by uniformly shrinking the cube so that it

intersects the sphere. To ensure conservation of mass,

‘‘truncated’’ solid phase material is evenly redistrib-

uted over the free surface within the cube such that the

volume of solid phase material inside the cube always

equals the volume of the initial sphere [12]. The area of

intersection between cube faces and the sphere will be

the smallest cross-sectional area for the packing, and

hence is the minimum solid area for this microstruc-

ture. Other microstructures (e.g. spherical pores in a

solid matrix) can be considered using the same basic

approach. Thus, the general term ‘‘MSA models’’ in

fact describes a suite of models; each is constructed in a

similar manner, but differ in the initial microstructure

considered.

A strong positive of MSA models is that both

boundary conditions are properly satisfied. For exam-

ple, at porosities slightly higher than the initial simple

cubic packing, NMSA and hence E/Esolid is zero.

Alternatively, at p = 0, the initially spherical particle

has deformed into a cube so NMSA = E/Esolid = 1.

However, the manner in which MSA models incorpo-

rate microstructural changes entails certain assump-

tions of material behaviour. For instance, in the model

based on cubic packings of spheres, as porosity is re-

duced it is assumed the ‘‘truncated’’ material (in the

contact region) is uniformly distributed over the non-

contacting surfaces of the particle. This assumption

makes the model most applicable to sintered micro-

structures and possibly compaction of ductile powder

materials. Micrographs of particles recovered from

compacts of spheroidal powders at various stages

throughout compaction are presented elsewhere [65].

For ductile powders, large flat deformation faces were

found to develop at inter-particle contacts. Thus, MSA

models based on packings of solid spheres should

provide a reasonable description of the evolving

microstructure within a compact of ductile spheroidal

particles. The analogy will not be exact however, as

material displaced by plastic flow will remain in the

contact region rather than being uniformly distributed

over the remaining surfaces. Similarly, for sintered

powders, solid phase material will diffuse to the contact

region to form ‘‘necks’’ between particles (e.g. [66]). In

both cases, MSA models will predict a slightly higher

compliance, as the calculated areas of contact will be

less. Still, it is clear that this approach to modelling

better replicates the compaction-induced changes in

pore character than models which idealise the pore

space by ellipsoids. Certainly, the physical link to the

assumed microstructure is much stronger. Comparison

between experimental data and predictions of some

MSA models is presented in Fig. 9.

The porosity at which spheroidal powder compacts

first demonstrate measurable elastic properties lies

intermediate between predictions of MSA models for

simple cubic and rhombohedral sphere packings. This

is consistent with the expectation that neither regular

packing accurately replicates real particle packings.

With reducing porosity, the dependence of normalised

Young’s modulus for the spheroidal copper powder

rapidly approaches the model microstructure for a

simple cubic packing of spheres. Significantly though,

the rate at which Young’s modulus for the spheroidal

copper powder increases with reducing porosity, most

closely matches the porosity dependence of the

rhombohedral model. This indicates the higher coor-

dination number of the rhombohedral packing (ini-

tially 12) is more appropriate than the simple cubic

packing (initially four). Micrographs of particles

recovered from uniaxial compacts [65] generally sup-

port this.

With reducing porosity, the dependence of Young’s

modulus for the spheroidal glass powder diverges from

the spheroidal copper. This result is attributed to
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differences in contact geometry, rather than packing,

and is indicative of differences in solid phase yield

mechanisms. Micrographs of particles recovered from

the glass compacts [65], illustrate that compaction of

brittle powders produces angular fracture debris, ra-

ther than the flat deformation faces observed on duc-

tile particles. Clearly, this represents a significant

departure from the contact geometry assumed by MSA

models, illustrating the importance of correctly

accounting for differences in the evolution of porosity

according to solid phase yield behaviour. A further

example of this is furnished by the dendritic and

spheroidal copper powders at the lowest porosities,

both of which asymptote towards the MSA model

based on cubic stacking of spherical pores. This indi-

cates that initial differences due to the convex features

of porosity associated with sphere packings, and the

irregular pore geometry of rugged particle packings are

gradually reduced as compaction proceeds. For both,

the pore spaces apparently take on an increasingly

spherical nature with compaction. In all, the MSA

approach is remarkably successful; particularly given

its simple physical basis. It is felt much of this success

owes to incorporating microstructural changes that are

physically realistic, particularly for ductile materials.

Wang (1984)

The final model for isotropic elastic moduli considered

here is due to Wang [4]. This model is also represen-

tative of geometrically based load-bearing area models.

Again, a simple cubic packing of identical spheres is

assumed, and the densification process is considered to

occur in the manner described in ‘‘Minimum solid area

models (Rice 1998)’’. However, in contrast to the MSA

models described by Rice [12], elastic deformation of

the whole particle (truncated sphere) is considered,

rather than assuming the contact area dominates.

Predictions of this approach are compared with

experimental data in Fig. 10, along with two modifi-

cations to account for effects of non-ideal packing.

These account for mis-alignment of the applied stress

with < 1 0 0 >, which introduces a shearing effect

(‘‘imperfect’’), and additionally, a ‘‘hinge’’ effect at the

particle contact. Unfortunately, these modifications are

not entirely rigorous, as it is assumed that the norma-

lised Young’s modulus and shear modulus have the

same porosity dependence. By Eqs. 1–3, this is equiv-

alent to assuming that Poisson’s ratio is constant at the

solid phase value throughout.

The difference between the models of Wang illus-

trates the importance of non-ideal alignment for

models based on regular packings. Also of note is the

difference between the models assuming elastic

deformation is localised at the contact area (MSA

model) compared to the ideal model of Wang that

considers deformation distributed throughout the bulk

of the particle. With increasing densification towards

zero porosity, the MSA model assumption of localised

deformation loses validity, as the elastic straining must

eventually be uniformly distributed throughout the

solid phase material. This may not be of practical

importance however, as all model predictions converge

towards the solid phase value at zero porosity.

Discussion

Several models that have previously been proposed to

account for the porosity dependence of elastic prop-

erties in granular and porous materials were compared

with experimental results on the evolving elastic

properties of powders during uniaxial compaction. The

list of models selected for study is by no means

exhaustive; those chosen were considered representa-

tive of the basic approaches to model building: parti-

cle-based, and pore-based (comprising of mechanistic

and geometric models). Preference was given to mod-

els which consider sample microstructure, either

through a shape parameter, or are constructed con-

sidering a definite microstructure. Model predictions

were compared to experimental data on evolving
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Fig. 10 Comparison between model predictions of Wang [4] and
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fect’’ packing, (—) ‘‘hinge’’ effect. (- d -) MSA model predictions
for a simple cubic packing of solid spheres is also shown
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elastic moduli of powders during compaction. The data

considered spans an appreciable porosity range, and

encompasses a wide range of powder morphologies,

and material behaviour (yield mechanism, solid phase

elastic properties). When evaluating the relative merits

of each model, attention was focussed on identifying

correct model behaviour in terms of evolving micro-

structure, rather than the ability to follow measured

data. As such, statistics to evaluate goodness-of-fit

were not considered.

A selection of attributes considered essential for

accurate prediction of elastic moduli of a completely

isotropic material are listed in Table 2, along with an

indication of whether each individual model possesses

these features. Similar attributes are also desirable in

models accounting for elastic anisotropy, however,

only one of the models considered here had this

capability.

When considered purely in terms of the ability to

match experimental observations, the model of Nielsen

[40] appears most successful. However, as discussed

previously, the shape parameter of this model (b) does

not have a clear interpretation in terms of material

microstructure, certainly not to the extent that it can be

directly measured. This is an important deficiency for

this model and many others. While it is acknowledged

that it is a difficult task to characterise the micro-

structure, particularly at high porosity, it is felt this

problem must be addressed. Further, the evolution of

sample microstructure, i.e. b(p), also needs to be

incorporated, either implicitly within the model, or by

use of a dedicated secondary model. It is important

however, that any descriptors used have a clear link to

the sample microstructure. As discussed by Rice [58,

12], without clear physical interpretation, fitted

parameters essentially become empirical. Care must be

taken to ensure the parameter that accounts for shape

remains consistent with its initial function, and does

not incorporate additional effects not included in the

formulation of the original model. An example of this

is furnished by application of the model of Kendall

et al. [8] to predict Young’s modulus during uniaxial

powder compaction. If the interface energy (G) is used

as a regression parameter (see subsection ‘‘Kendall

et al. (1987)’’), effects on compact stiffness due to

permanent deformation of powder particles are inevi-

tably included in its calculated value: G assumes higher

values to account for the additional bonding effects of

powder compaction. This arises because the original

model only considered elastic deformation; and while

the resulting model fits are quite acceptable, the

parameter values are unrealistic to the feature they are

to describe.

Pore aspect ratio (a) is affected by similar issues

when used as a fitting parameter: model deficiencies

and the violation of model assumptions may be ob-

scured by a assuming values which are inconsistent

with the sample microstructure. Particular among these

is that most mechanistic models only incorporate pore

elongation when considering effects that reduce

material stiffness: the contribution of pore irregularity

is neglected. This omission is at least part of the reason

strongly oblate pores are often predicted, as required

to account for the reduced stiffness due to pore irreg-

ularity. However, even if effects of pore irregularity are

included, accurate description of the elastic properties

over a range of porosities is still unlikely to result, as

the microstructure inevitably changes with porosity.

The importance of accounting for a changing micro-

structure is illustrated by comparing the MSA models

Table 2 Comparison between features of the models considered
in section ‘‘Evaluation of specific models’’ under subsections
‘‘Particle-based models’’ to ‘‘Mechanistic pore-based models

(Transversely isotropic)’’ (Y) denotes the model possesses this
feature, (N) indicates it does not

Model E and m Analytic basis Asymptotic behaviour Pore
shape

Micro-structural
interpretation

Micro-structural
changes

At p = 0 At p = pc pc < 1

E=Esolid m=msolid E=0 m=0.5

Kendall et al. [8] N Y N – Y – N N – N
Nielsen [40] Y Y Y Y Y N Y Y N N
Zhao et al. [35] Y Y Y Y Y N N Y N N
Boccaccini et al. [61] N Y Y – Y – N Y N N
Arnold et al. [62] Y Y Y Y Y Y N Y N N
MSA models Rice [12] N Y Y – Y – Y –* – Y
Wang [4] analytic N Y Y – Y – Y –* – Y

Note: Pore shape refers to whether the model has a quantitative parameter to describe pore character. Microstructural interpretation
denotes a clear interpretation of the parameter is possible (i.e. can be measured from the pore structure)

* Pore shape is included implicitly during model development rather than appearing as quantitative model parameter
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and that of Wang [4], to the model suggested by

Kendall et al. [8]. Each of these models is based on

regular packing of identical spherical particles. How-

ever, while the MSA models and the approach of

Wang [4] both consider changes in microstructure

resulting from permanent deformation of the solid

phase material as porosity is reduced, the model of

Kendall and co-workers does not. As discussed previ-

ously, application of Kendall’s model to situations

involving permanent deformation of the particles then

results in unrealistic values of the model parameters.

Despite the positives of their ability to incorporate

microstructural evolution, the geometric models of

Wang [4] and Rice [12] still remain somewhat limited.

Model predictions for ductile spheroidal particles are

generally quite good, and could possibly be improved

further by incorporating evolution from sphere

packings to pore stacked geometries as porosity is

decreased. However, as results for the spheroidal glass

powder illustrate, it is somewhat more challenging to

account for microstructural changes during compaction

of a brittle powder. Similar comments hold for a rug-

ged powder (dendritic copper); it is not clear how a

microstructure appropriate to such a powder would

evolve with porosity, nor even how it would be defined

initially. That is, a given model lacks the ability to be

adapted to a new microstructure. For each different

microstructural evolution a new model must be for-

mulated. This is particularly challenging for powders

whose constituent particles differ significantly from

simple geometric shapes.

A limitation common to many mechanistic models is

the inability to account for vanishing stiffness at

porosities less than unity (e.g. the isotropic model of

Zhao et al. [35]), which is related to the more general

problem of not properly accounting for changes in

sample microstructure with porosity. Indeed, the

results discussed above suggest pc is the most impor-

tant model parameter aside from porosity itself. This is

supported by recent results [67] which demonstrate

that individual MSA model predictions can be brought

into close coincidence if porosity is normalised by pc,

i.e. direct substitution of p with p/pc. However, many

mechanistic models will be rendered invalid by a sim-

ilar substitution as the magnitude of mechanical fields,

and hence the predicted response, depends directly on

porosity (which is not equivalent to p/pc) [12]. Com-

plete re-formulation of the model to incorporate pc

would be required. Even so, the worth of this is ques-

tionable given that most mechanistic models are an

extension of models assuming non-interacting inclu-

sions. Interaction is approximated by considering sur-

rounding pores modifying either the effective

properties of a matrix or the effective mechanical field.

But this can not hold at the highest porosities (close to

the critical porosity) when there is extensive pore

interconnection, as the stress and strain fields within

the material will be highly heterogeneous. For this

situation, the relative placement of pores will be criti-

cal; however, homogenisation approaches ignore this,

effectively pores can be placed anywhere.

Thus, in terms of the ability to predict the elastic

moduli of a given powder during compaction, with

information known only on the solid phase material

properties, yield mechanism, starting particle shape,

and compact microstructure at various stages

throughout compaction (e.g. sectioned images), none

of the models is entirely successful. It is still not pos-

sible to accurately predict the elastic properties at a

given porosity purely on this basis. The main reason for

this is the inability to extract information from the

sample microstructure that can be incorporated into

such a model. The models either incorporate a

parameter to account for an unknown microstructure

(which is often used in an empirical way), or assume a

particular (often highly idealised) microstructure. It is

felt that useful models for describing the elastic prop-

erties of granular materials during compaction need to

combine these aspects of the mechanistic and geo-

metric modelling approaches. That is, combine the

adaptive ability of mechanistic models with the ability

of geometric models to describe changing microstruc-

ture with porosity.

In summary, for accurate prediction of elastic

properties of powders during compaction, it is consid-

ered necessary that a model has the ability to:

• Predict all elastic moduli (complete specification of

Cij).

• Cover the entire porosity range (0 £ p £ pc).

• Satisfy both boundary conditions (at zero porosity

and the critical porosity).

• Describe changing microstructure with porosity.

• Be adaptive to different starting microstructures.

• Accommodate solid phase materials with different

yield mechanisms (ductile and brittle).

• Describe elastic anisotropy.

Conclusions

Models have previously been published which describe

the variation of elastic properties as a function of

porosity in porous or granular materials. Representa-

tive samples have been chosen for detailed comparison
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with experimental data obtained during the compac-

tion of powders. Both ductile and brittle powders were

considered, as was starting powder particle shape

(hence pore character). Models considered were Par-

ticle Based Models, typified by that due to Kendall and

co-workers, Mechanistic Pore-Based Models (Isotro-

pic), typified by that due to Nielsen, Zhao and

co-workers (for isotropic case), Boccaccini and

co-workers, Arnold and co-workers, Mechanistic Pore-

Based Models (Transversely isotropic) due to Zhao and

co-workers, and Geometric Pore-Based Models, typi-

fied by the MSA models of Rice and the geometrically

based load bearing area model of Wang.

The particle-based model of Kendall predicted a

functional dependence of Young’s modulus with

porosity which agreed reasonably well with experi-

ment, provided the surface energy parameter (G) was

used as a fitting parameter rather than a physically

based material constant. Agreement was best with

irregular ductile copper powder and worst with brittle

spherical glass powder. However, this model only

provides information about one elastic modulus and

therefore provides an incomplete description of the

elastic response.

Of the isotropic pore-based models, that due to

Nielsen gave the best agreement with experiment.

However, with the one exception of the Arnold model,

all models in this class showed a monotonically

decreasing value for Poisson’s ratio as porosity in-

creased. This contrasts with experiment which shows

that a minimum value occurs in Poisson’s ratio at an

intermediate value of porosity.

The transversely isotropic pore-based model of

Zhao showed some qualitative agreement when com-

pared with measured values of elastic properties during

uniaxial compaction. The model correctly predicted

that both Young’s modulus and Poisson’s ratio in the

axial plane were larger than equivalent parameters in

the radial plane, but the model overpredicted the dif-

ference between axial and radial values. Predicted

values for shear modulus were much more accurate.

Of the geometric pore-based models considered in

detail, that of Rice based on minimum solid area gave

the closest agreement in terms of functional depen-

dence of elastic properties on porosity. For Young’s

modulus, the experimental results fell between pre-

dictions of the MSA models for rhombohedral sphere

packings and cubic packing of spherical pores, sug-

gesting the need to consider a transition in micro-

structure during compaction. Again, this model class

only encompasses a single elastic modulus and there-

fore does not provide a complete description of elastic

behaviour.
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57. Ponte Castañeda P, Willis JR (1995) J Mech Phys Solids

43:1919
58. Rice RW (1996) J Mater Sci 31:1509
59. Cytermann R (1987) Powder Metall Int 19:27
60. Phani KK, Niyogi SK (1987) J Am Ceram Soc 70:362
61. Boccaccini AR, Ondracek G, Mazilu P, Windelberg D

(1993) J Mech Behav Mater 4:119
62. Arnold M, Boccaccini AR, Ondracek G (1996) J Mater Sci

31:1643
63. Abdel-Ghani M, Petrie JG, Seville JPK, Clift R, Adams MJ

(1991) Powder Technol 65:113
64. Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157
65. Hentschel ML (2002) PhD thesis. The University of New-

castle
66. German RM (1996) Sintering theory and practice. Wiley,

New York
67. Rice RW (2005) J Mater Sci 40:983

J Mater Sci (2006) 41:7902–7925 7925

123


	Elastic properties of powders during compaction. Part 3: Evaluation of models
	Abstract
	Introduction
	Approaches to modelling
	Introductory remarks
	Correct asymptotic behaviour
	Consistency with linear elasticity
	Physical interpretation
	Particle-based models
	Pore-based models
	Introductory remarks
	Mechanistic pore-based models
	Geometric pore-based models
	Evaluation of specific models
	Introductory remarks
	Fig1
	Particle-based models
	Kendall et nbsp al. \(1987\)
	Mechanistic pore-based models \(Isotropic\)
	Nielsen \(1982\)
	Fig2
	Zhao et nbsp al. \(1989\) \(Isotropic model\)
	Fig3
	Tab1
	Boccaccini et™al. \(1993\)
	Fig4
	Fig5
	Fig6
	Arnold et nbsp al. \(1996\)
	Mechanistic pore-based models \(Transversely isotropic\)
	Fig7
	Geometric pore-based models
	Minimum solid area models \(Rice 1998\)
	Fig8
	Fig9
	Wang \(1984\)
	Discussion
	Fig10
	Tab2
	Conclusions
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


